Большие языковые модели для снижения задержки: новое семейство моделей, специализированных на методе декодирования Якоби.

 Consistency Large Language Models (CLLMs): A New Family of LLMs Specialized for the Jacobi Decoding Method for Latency Reduction

“`html

Consistency Large Language Models (CLLMs): Новое семейство LLM, специализированное для метода декодирования Якоби для снижения задержки

Большие языковые модели (LLM), включая GPT-4, LLaMA и PaLM, выталкивают границы искусственного интеллекта. Задержка вывода LLM играет важную роль из-за интеграции LLM в различные приложения, обеспечивая положительный опыт пользователя и высокое качество обслуживания. Однако служба LLM работает в рамках AR-парадигмы, генерируя по одному токену за раз, потому что механизм внимания полагается на предыдущие состояния токенов для генерации следующего токена. Чтобы создать более длинный ответ, выполняется прямой проход, используя LLM, эквивалентный количеству сгенерированных токенов, что приводит к высокой задержке.

Эффективный метод вывода LLM

Эффективный метод вывода LLM разделен на два потока: метод, требующий дополнительной тренировки, и метод, не требующий ее. Исследователи изучили этот метод из-за высокой стоимости вывода AR для LLM, в основном сосредоточившись на увеличении процесса декодирования AR. Еще один существующий метод – это Дистилляция LLM, где используется техника дистилляции знаний (KD) для создания маленьких моделей и замены функциональности более крупных. Однако традиционные методы KD неэффективны для LLM. Поэтому KD используется для авторегрессивных LLM для минимизации обратного KL-расхождения между студенческими и учительскими моделями через декодирование, управляемое студентом.

Consistency Large Language Models (CLLMs)

Исследователи из университета Шанхая Джиао и университета Калифорнии предложили CLLMs, новое семейство LLM, специализированное для метода декодирования Якоби для снижения задержки. CLLM был сравнен с традиционными методами, такими как спекулятивное декодирование и Медуза, для настройки вспомогательных компонентов модели и не использовал дополнительную память для этой задачи, в отличие от других. Когда CLLM обучается на ∼ 1M токенов для LLaMA-7B, он становится в 3,4 раза быстрее на наборе данных Spider, что показывает, что стоимость настройки для этого метода умеренная. Два основных фактора для ускорения – быстрое декодирование и стационарные токены.

В быстром декодировании правильные предсказания делаются в один проход для нескольких последовательных токенов, тогда как стационарные токены показывают правильное предсказание без изменений через последующие итерации, несмотря на то, что они предшествуют неточным токенам. В LLM и CLLM, когда сравниваются количество быстрых и стационарных токенов на всех четырех наборах данных (в Таблице 3), улучшение количества токенов составляет от 2,0x до 6,8x. Также для обоих количеств токенов такое улучшение в наборах данных, специфичных для домена, лучше, чем в наборах данных общего профиля на MT-bench. Это помогает выделить коллокации и простые синтаксические структуры, такие как пробелы, токены новой строки и повторяющиеся специальные символы в специализированных областях, таких как программирование.

Исследователи провели эксперименты для оценки производительности и ускорения вывода CLLM на нескольких задачах, таких как сравнение базовых уровней (SOTA) на трех специфических для домена задачах и задачах общего профиля на MT-bench. CLLM показывает выдающуюся производительность на различных бенчмарках, например, он может достичь ускорения в 2,4× до 3,4× с использованием декодирования Якоби с практически никакой потерей точности на специфических для домена бенчмарках, таких как GSM8K, CodeSearchNet Python и Spider. CLLM может достичь ускорения в 2,4× на ShareGPT с производительностью SOTA, с оценкой 6,4 на общедоступном бенчмарке MT-bench.

Заключение

Исследователи представили CLLM, новое семейство LLM, которое отличается эффективным параллельным декодированием и разработано таким образом, что может улучшить эффективность декодирования Якоби. Дополнительные архитектурные решения или управление двумя различными моделями в одной системе сложны, и сложность снижается с помощью CLLM, потому что этот метод прямо адаптирован из целевой предварительно обученной LLM. Кроме того, количество быстрых и стационарных токенов сравниваются на четырех наборах данных, показывая улучшение от 2,0x до 6,8x в LLM и CLLM.

Посмотрите статью и проект. Вся заслуга за это исследование принадлежит его авторам. Также не забудьте подписаться на наш Twitter. Присоединяйтесь к нашему каналу Telegram, каналу Discord и группе LinkedIn.

Если вам понравилась наша работа, вам понравится наш информационный бюллетень.

Не забудьте присоединиться к нашему 42k+ ML SubReddit

Оригинал статьи опубликован на сайте MarkTechPost.

“`

Мобильная разработка на заказ и готовые решения

Мобильная разработка

Готовые и индивидуальные решения

Веб решения - разработка сайтов и сервисов

Web решения

Получите бесплатную консультацию по веб-разработке прямо сейчас

Аутсорсинг, подбор специалистов и команд разработки

Аутсорсинг

Выберите своего специалиста сегодня и начните свой проект

Новости

  • Инновации в обработке языка с помощью ИИ: новые возможности для бизнеса

    Преобразование обработки языка с помощью ИИ Понимание проблем обработки языка Обработка языка – это сложная задача, требующая учета многомерности и контекста. Исследования в области психолингвистики сосредоточены на определении символических характеристик различных языковых областей.…

  • Надежный ИИ для Обслуживания Клиентов: Решения и Принципы

    Улучшение Надежности ИИ в Обслуживании Клиентов Проблема: Непостоянная Производительность ИИ в Обслуживании Клиентов Большие языковые модели (LLMs) показывают многообещающие результаты в роли обслуживания клиентов, но их надежность как независимых агентов вызывает серьезные опасения.…

  • Создание разговорного исследовательского помощника с использованием технологии RAG

    Создание Разговорного Исследовательского Ассистента Введение Технология Retrieval-Augmented Generation (RAG) улучшает традиционные языковые модели, интегрируя системы поиска информации. Это позволяет создавать разговорных исследовательских ассистентов, которые точно отвечают на запросы, основанные на конкретных базах знаний.…

  • Беспристрастное обучение с подкреплением для улучшения математического мышления в больших языковых моделях

    Практические бизнес-решения Организации, стремящиеся использовать ИИ, могут реализовать следующие стратегии: 1. Определите возможности автоматизации Изучите процессы, которые можно автоматизировать для повышения эффективности и снижения затрат. Это может включать обработку данных, ответы на часто…

  • Fin-R1: Прорыв в финансовом ИИ

    Введение Искусственный интеллект (ИИ) в финансовом секторе продолжает развиваться, предлагая новые решения для улучшения бизнес-процессов. Система Fin-R1, специализированная модель ИИ, способна решить многие проблемы, связанные с финансовым анализом и принятием решений. Проблемы в…

  • SWEET-RL: Прорыв в обучении многоходовых языковых агентов

    Практические бизнес-решения с использованием SWEET-RL Введение в большие языковые модели (LLMs) Большие языковые модели (LLMs) становятся мощными автономными агентами, способными выполнять сложные задачи. Их применение в бизнесе может значительно повысить эффективность процессов. Решение…

  • RD-Agent: Революция в автоматизации НИОКР с помощью ИИ

    Преобразование НИОКР с помощью ИИ: Решение RD-Agent Значение НИОКР в эпоху ИИ НИОКР играет ключевую роль в повышении производительности, особенно в условиях, когда доминирует ИИ. Традиционные методы автоматизации НИОКР часто не справляются с…

  • Современные аудиомодели OpenAI для синтеза речи и транскрипции в реальном времени

    Улучшение взаимодействия с аудио в реальном времени с помощью передовых аудиомоделей OpenAI Введение Быстрый рост голосовых взаимодействий на цифровых платформах повысил ожидания пользователей к бесшовным и естественным аудиоопытам. Традиционные технологии синтеза речи и…

  • Инновационные решения для управления катастрофами с использованием ИИ

    Практические бизнес-решения для управления бедствиями с использованием ИИ Использование ИИ для управления бедствиями Инновационное применение модели глубокого обучения ResNet-50 от IBM позволяет организациям быстро анализировать спутниковые изображения для определения и классификации зон, пострадавших…

  • Запуск MoshiVis: Открытая модель речевого взаимодействия с изображениями

    Преобразование бизнеса с помощью MoshiVis Проблемы традиционных систем Традиционные системы взаимодействия с речью и визуальным контентом часто имеют недостатки, такие как задержки и неспособность учитывать эмоциональные сигналы. Это особенно важно для пользователей с…

  • NVIDIA Dynamo: Библиотека для ускорения и масштабирования ИИ моделей

    Преобразование бизнеса с помощью ИИ Искусственный интеллект (ИИ) предлагает множество возможностей для оптимизации бизнес-процессов и повышения эффективности. Вот практические решения на основе технологий, таких как NVIDIA Dynamo, которые могут улучшить результаты бизнеса и…

  • Создание семантической поисковой системы с использованием Sentence Transformers и FAISS

    Построение семантической поисковой системы Понимание семантического поиска Семантический поиск улучшает традиционное сопоставление ключевых слов, понимая контекстное значение поисковых запросов. Это позволяет бизнесу улучшить пользовательский опыт и процесс извлечения информации. Реализация семантической поисковой системы…

  • Эффективная интеграция знаний в большие языковые модели с KBLAM

    Улучшение больших языковых моделей с помощью KBLAM Введение в интеграцию знаний в LLM Большие языковые модели (LLM) обладают выдающимися способностями к рассуждению и знанию. Однако им часто не хватает дополнительной информации для заполнения…

  • Эффективное использование SQL баз данных с Python для бизнеса

    Практические бизнес-решения с использованием SQL и Python Как это улучшает бизнес и реальную жизнь Использование SQL баз данных с Python позволяет компаниям эффективно управлять данными, автоматизировать процессы и принимать обоснованные решения. Это приводит…

  • Создание системы RAG с использованием FAISS и открытых LLM

    Введение в Retrieval-Augmented Generation (RAG) Retrieval-Augmented Generation (RAG) – это методология, которая улучшает возможности больших языковых моделей (LLMs), сочетая их креативные навыки генерации с точностью фактической информации из систем поиска. Это решение помогает…

  • MemQ: Революция в ответах на вопросы к графам знаний с использованием технологий памяти

    Введение в применение искусственного интеллекта в бизнесе Искусственный интеллект (ИИ) может значительно улучшить бизнес-процессы, автоматизируя задачи и улучшая взаимодействие с клиентами. Одним из новейших методов является MemQ, который помогает повысить точность и читаемость…

  • ByteDance представляет DAPO: Открытая система обучения с подкреплением для больших языковых моделей

    Внедрение DAPO для трансформации бизнеса Для повышения эффективности бизнеса и улучшения жизни можно использовать достижения в области обучения с подкреплением (RL) и системы DAPO, разработанной для улучшения моделей обработки языка. Вот несколько практических…

  • Открытие NVIDIA: Многоязычные модели речи для бизнеса

    Улучшение глобальной коммуникации с помощью ИИ Введение в многозначное распознавание речи В современном мире способность общаться на разных языках является важной для бизнеса. Инструменты многозначного распознавания речи и перевода помогают преодолевать языковые барьеры.…