Как часто возникают галлюцинации в языковых моделях: обзор обучения на базе графов знаний и сложности их обнаружения

 Understanding Hallucination Rates in Language Models: Insights from Training on Knowledge Graphs and Their Detectability Challenges

“`html

Понимание уровня галлюцинаций в языковых моделях: Инсайты из обучения на графах знаний и вызовы их обнаружения

Языковые модели (LM) проявляют улучшенную производительность с увеличением размера и обучающих данных, однако связь между масштабом модели и галлюцинациями остается неизученной. Определение галлюцинаций в LM представляет вызовы из-за их разнообразных проявлений. Новое исследование от Google Deepmind фокусируется на галлюцинациях, когда правильные ответы появляются дословно в обучающих данных. Достижение низких уровней галлюцинаций требует более крупных моделей и больших вычислительных ресурсов, чем ранее предполагалось. Обнаружение галлюцинаций становится все более сложным с увеличением размера LM. Графы знаний (KG) предлагают многообещающий подход к предоставлению структурированных фактических обучающих данных для LM, потенциально смягчая галлюцинации.

Практические решения и ценность

Исследование рассматривает связь масштаба языковой модели (LM) и галлюцинаций, сосредотачиваясь на случаях, когда правильные ответы присутствуют в обучающих данных. Используя набор данных на основе графа знаний (KG), исследователи обучают все более крупные LM для эффективного контроля содержания обучения. Находки показывают, что более крупные, долго обученные LM галлюцинируют меньше, но достижение низких уровней галлюцинаций требует значительно больше ресурсов, чем ранее предполагалось. Исследование также показывает обратную связь между масштабом LM и обнаружимостью галлюцинаций.

Традиционные языковые модели (LM), обученные на данных естественного языка, часто производят галлюцинации и повторяющуюся информацию из-за семантической неоднозначности. Исследование использует подход на основе графа знаний (KG), используя структурированные тройки информации для более ясного понимания того, как LM искажают обучающие данные. Этот метод позволяет более точно оценить галлюцинации и их связь с масштабом модели.

Исследование создает набор данных с использованием троек графа знаний (субъект, предикат, объект), обеспечивая точный контроль обучающих данных и количественное измерение галлюцинаций. Языковые модели (LM) обучаются с нуля на этом наборе данных, оптимизируя авторегрессионную логарифмическую вероятность. Оценка включает подачу моделям субъекта и предиката, а также оценку точности завершения объекта по сравнению с графом знаний. Задачи с токенами и детекторы головы оценивают производительность обнаружения галлюцинаций. Методология сосредотачивается на галлюцинациях, когда правильные ответы появляются дословно в обучающем наборе, изучая связь масштаба LM и частоты галлюцинаций.

Исследование обучает все более крупные LM для изучения эффектов масштаба на уровни галлюцинаций и их обнаружимость. Анализ показывает, что более крупные, долго обученные LM галлюцинируют меньше, хотя более крупные наборы данных могут увеличить уровни галлюцинаций. Авторы признают ограничения обобщения на все типы галлюцинаций и использование моделей меньшего размера, чем современные. Этот всесторонний подход предоставляет понимание галлюцинаций LM и их обнаружимость, внося вклад в область обработки естественного языка.

В заключение, исследование показывает, что более крупные и долго обученные языковые модели снижают уровни галлюцинаций на фиксированных наборах данных, в то время как увеличение размера набора данных повышает уровни галлюцинаций. Детекторы галлюцинаций показывают высокую точность, улучшаясь с увеличением размера модели. Общий уровень обнаружения токенов, как правило, превосходит другие методы. Существует компромисс между запоминанием фактов и способностью обобщения, при этом продленное обучение минимизирует галлюцинации на видимых данных, но рискует переобучением на невидимых данных. AUC-PR служит надежной мерой производительности детектора. Эти результаты подчеркивают сложную связь между масштабом модели, размером набора данных и уровнями галлюцинаций, подчеркивая важность балансирования размера модели и продолжительности обучения для смягчения галлюцинаций, а также решения вызовов, которые возникают из-за более крупных наборов данных.

Практическое применение исследования

Если вы хотите, чтобы ваша компания развивалась с помощью искусственного интеллекта (ИИ) и оставалась в числе лидеров, грамотно используйте исследование “Понимание уровня галлюцинаций в языковых моделях: Инсайты из обучения на графах знаний и вызовы их обнаружения”.

Проанализируйте, как ИИ может изменить вашу работу. Определите, где возможно применение автоматизации: найдите моменты, когда ваши клиенты могут извлечь выгоду из AI.

Определитесь какие ключевые показатели эффективности (KPI): вы хотите улучшить с помощью ИИ.

Подберите подходящее решение, сейчас очень много вариантов ИИ. Внедряйте ИИ решения постепенно: начните с малого проекта, анализируйте результаты и KPI.

На полученных данных и опыте расширяйте автоматизацию.

Если вам нужны советы по внедрению ИИ, пишите нам на https://t.me/flycodetelegram.

Попробуйте ИИ ассистент в продажах https://flycode.ru/aisales/. Этот ИИ ассистент в продажах помогает отвечать на вопросы клиентов, генерировать контент для отдела продаж, снижать нагрузку на первую линию.

Узнайте, как ИИ может изменить ваши процессы с решениями от Flycode.ru.

“`

Мобильная разработка на заказ и готовые решения

Мобильная разработка

Готовые и индивидуальные решения

Веб решения - разработка сайтов и сервисов

Web решения

Получите бесплатную консультацию по веб-разработке прямо сейчас

Аутсорсинг, подбор специалистов и команд разработки

Аутсорсинг

Выберите своего специалиста сегодня и начните свой проект

Новости

  • VideoMind: Прорыв в понимании видео с помощью ИИ

    Видеоминд: Применение AI для понимания видео Видеоминд представляет собой значительное достижение в области искусственного интеллекта, особенно в понимании видео. Этот инновационный подход решает уникальные задачи анализа видеоконтента. Понимание задач видеоконтента Видеоматериалы более сложны…

  • Hostinger Horizons: Создавайте веб-приложения без кода с помощью ИИ

    Практические бизнес-решения с использованием Hostinger Horizons Hostinger Horizons предлагает уникальные возможности для бизнеса благодаря своей платформе без кода, которая упрощает создание веб-приложений. Вот как это может улучшить бизнес и реальную жизнь: Преимущества использования…

  • Hunyuan-T1: Революция в Искусственном Интеллекте для Бизнеса

    Практические бизнес-решения Преобразование рабочих процессов Искусственный интеллект может значительно улучшить бизнес-операции. Вот практические шаги, которые стоит рассмотреть: 1. Определите возможности автоматизации Ищите процессы, которые можно автоматизировать для повышения эффективности. 2. Улучшите взаимодействие с…

  • FFN Fusion от NVIDIA: Революция в эффективности больших языковых моделей

    Введение в большие языковые модели Большие языковые модели (LLMs) становятся все более важными в различных секторах, обеспечивая работу приложений, таких как генерация естественного языка и разговорные агенты. Однако с увеличением размера и сложности…

  • UI-R1: Улучшение предсказания действий GUI с помощью обучения с подкреплением

    UI-R1 Framework: Улучшение предсказания действий GUI с помощью ИИ Обзор проблемы Традиционный метод обучения больших языковых моделей (LLMs) и агентов графического пользовательского интерфейса (GUI) требует больших объемов размеченных данных, что приводит к длительным…

  • Эффективное Масштабирование Времени Вывода для Бизнеса

    Оптимизация времени вывода для потоковых моделей: практические бизнес-решения Введение Недавние разработки в области искусственного интеллекта сместили акцент с увеличения размера модели и объема обучающих данных на повышение эффективности вычислений во время вывода. Эта…

  • Устойчивое развитие AI для временных рядов с помощью синтетических данных: инновационный подход Salesforce

    Возможности ИИ для анализа временных рядов с использованием синтетических данных Анализ временных рядов имеет огромное значение для бизнеса, но он сталкивается с проблемами доступности и качества данных. Использование синтетических данных может решить эти…

  • Руководство по решению уравнения Бюргера 1D с помощью PINNs в PyTorch

    Практическое руководство по преобразованию бизнеса с помощью ИИ Это руководство демонстрирует, как использовать физически обоснованные нейронные сети (PINNs) для решения уравнения Бургенса и как такие технологии могут улучшить бизнес-процессы и реальную жизнь. Шаги…

  • Открытие OpenVLThinker-7B: Новый уровень визуального мышления для бизнеса

    Улучшение визуального мышления с OpenVLThinker-7B Понимание проблемы Модели, объединяющие обработку языка и интерпретацию изображений, испытывают трудности с многошаговым мышлением. Это создает проблемы в таких задачах, как понимание графиков и решение визуальных математических задач.…

  • Создание агента по анализу данных с использованием Gemini 2.0 и Google API

    Создание агента научных данных с интеграцией ИИ Введение Этот гид описывает, как создать агента научных данных, используя библиотеку Pandas на Python и возможности генеративного ИИ от Google. Следуя этому руководству, бизнес сможет использовать…

  • TxGemma: Революция в разработке лекарств с помощью ИИ от Google

    Введение в TxGemma Разработка лекарств – это сложный и дорогостоящий процесс. TxGemma от Google AI предлагает инновационные решения для оптимизации этого процесса, что позволяет сэкономить время и ресурсы. Решение TxGemma TxGemma использует большие…

  • Открытый Глубокий Поиск: Демократизация ИИ-поиска с помощью открытых агентов рассуждения

    Практические бизнес-решения на основе Open Deep Search (ODS) 1. Автоматизация процессов Определите области, где ИИ может автоматизировать рутинные задачи, что приведет к повышению эффективности и производительности. 2. Улучшение взаимодействия с клиентами Используйте ИИ…

  • Оценка глубины изображения с использованием Intel MiDaS на Google Colab

    Практические бизнес-решения с использованием оценки глубины через монохромное изображение Оценка глубины из одного RGB-изображения с помощью модели Intel MiDaS может значительно улучшить бизнес-процессы, такие как: Улучшение взаимодействия с клиентами через дополненную реальность. Оптимизация…

  • TokenBridge: Оптимизация токенов для улучшенной визуальной генерации

    TokenBridge: Оптимизация визуальной генерации с помощью ИИ Введение в модели визуальной генерации Модели визуальной генерации на основе автогрессии значительно продвинулись в синтезе изображений, благодаря их способности использовать механизмы предсказания токенов, вдохновленные языковыми моделями.…

  • Колмогоров-Тест: Новый Стандарт Оценки Моделей Генерации Кода

    П practical business solutions Чтобы использовать возможности ИИ в вашем бизнесе, рассмотрите следующие стратегии: 1. Определите возможности автоматизации Ищите повторяющиеся задачи или взаимодействия с клиентами, которые ИИ может оптимизировать. Это поможет сократить время…

  • CaMeL: Надежная защита больших языковых моделей от атак

    Улучшение безопасности с помощью CaMeL Введение в проблему Большие языковые модели (LLM) играют важную роль в современных технологиях, но сталкиваются с угрозами безопасности, такими как атаки через инъекции команд. Эти угрозы могут привести…

  • Преобразование бизнес-процессов с помощью AI: Фреймворк PLAN-AND-ACT

    Преобразование бизнес-процессов с помощью ИИ: Рамочная структура PLAN-AND-ACT Понимание проблем Компании сталкиваются с вызовами при использовании ИИ, такими как сложность выполнения задач и адаптация к динамичным условиям. Это требует перевода пользовательских инструкций в…

  • DeepSeek V3-0324: Революция в AI для бизнеса

    Введение Искусственный интеллект (ИИ) значительно развился, но многие компании сталкиваются с высокими затратами на вычисления и разработку больших языковых моделей (LLM). Решение этих проблем возможно благодаря новейшей модели DeepSeek-V3-0324. Решение DeepSeek-V3-0324 Модель DeepSeek-V3-0324…