Модель глубокого обучения MatterSim для материалов в реальных условиях

 Microsoft Researchers Introduce MatterSim: A Deep-Learning Model for Materials Under Real-World Conditions

“`html

Искусственный интеллект в материаловедении: практические решения и ценность

Методы, такие как молекулярно-динамические симуляции, квантово-химические расчеты и моделирование свойств материалов на основе первых принципов, основаны на научных принципах и сложных математических моделях. Они требуют дорогостоящих вычислительных ресурсов, имеют ограниченную точность с комплексными моделями и сильно зависят от качества и количества доступных данных. Эти методы для разработки материалов основаны на физическом синтезе и тестировании, что является дорогостоящим, затратным по времени и часто непрактичным для исследования огромного пространства дизайна материалов, особенно учитывая различные среды, в которых они могут использоваться.

Решение: MatterSim от Microsoft

Исследователи Microsoft разработали MatterSim для точного прогнозирования свойств материалов в поиске инновационных материалов, необходимых для различных применений, таких как наноэлектроника, накопление энергии и здравоохранение. Основной вызов вызван сложными атомными взаимодействиями в материалах, которые подвержены влиянию множества факторов окружающей среды, таких как температура, давление и элементный состав. Цель исследования Microsoft заключается в разработке вычислительной платформы, которая может эффективно и точно предсказывать свойства материалов в широком диапазоне элементов, температур и давлений, позволяя проводить виртуальное проектирование материалов без необходимости обширных физических экспериментов.

Текущие методы прогнозирования свойств материалов часто полагаются на статистические подходы, которые могут испытывать трудности с точным улавливанием сложных атомных взаимодействий. В отличие от этого, предложенный метод MatterSim использует техники глубокого обучения для понимания атомных взаимодействий на основе фундаментальных принципов квантовой механики. MatterSim обучается на больших синтетических наборах данных, созданных путем объединения активного обучения, генеративных моделей и молекулярно-динамических симуляций. Это гарантирует полное охватывание пространства материалов. Большой набор данных также позволяет MatterSim точно предсказывать энергии, атомные силы, напряжения и различные свойства материалов по всей периодической таблице, охватывая температуры от 0 до 5000 К и давления до 1000 ГПа. Кроме того, MatterSim предлагает опции настройки для сложных задач прогнозирования путем включения предоставленных пользователем данных, что делает его адаптивным к конкретным требованиям дизайна.

Методология MatterSim основана на техниках глубокого обучения и активного обучения, что позволяет ему понимать атомные взаимодействия на фундаментальном уровне. Благодаря обучению на больших синтетических наборах данных, MatterSim учится предсказывать свойства материалов с высокой точностью, не уступающей методам первых принципов, но с существенно сниженной вычислительной стоимостью. Модель служит в качестве силового поля машинного обучения, способного моделировать различные свойства материалов, включая тепловые, механические и транспортные свойства, а также фазовые диаграммы.

MatterSim достигает десятикратного увеличения точности прогнозирования свойств материалов при конечных температурах и давлениях по сравнению с существующими передовыми моделями. Кроме того, MatterSim обладает высокой эффективностью использования данных, требуя лишь долю данных по сравнению с традиционными методами для достижения сопоставимой точности, что делает его особенно подходящим для сложных задач моделирования. Связывая атомистические модели с измерениями в реальном мире, MatterSim предлагает мощный инструмент для ускорения процессов дизайна и открытия материалов. Интеграция MatterSim с генеративными моделями и обучением с подкреплением имеет дополнительные возможности для улучшения его потенциальной роли в руководстве созданием материалов с желательными свойствами. Прогнозирование свойств материалов в различных условиях существенно снижает затраты, способствует инновациям, улучшает дизайн и гарантирует безопасность продукции. Это в конечном итоге открывает путь к созданию лучших материалов и более глубокому научному пониманию.

Заключение

MatterSim представляет собой значительное достижение в области материаловедения, решая проблему точного прогнозирования свойств материалов по широкому спектру элементов, температур и давлений. Благодаря использованию техник глубокого обучения и больших синтетических наборов данных, MatterSim достигает высокой точности прогнозирования свойств материалов, предлагая при этом опции настройки и высокую эффективность использования данных. Это позволяет исследователям ускорить процессы дизайна и открытия материалов, в конечном итоге разрабатывая новые материалы, специально предназначенные для различных применений.

Проверьте статью и блог. Вся заслуга за это исследование принадлежит исследователям этого проекта. Также не забудьте подписаться на нас в Twitter. Присоединяйтесь к нашему каналу в Telegram, группе в Discord и LinkedIn.

Если вам нравится наша работа, вам понравится наша рассылка.

Не забудьте присоединиться к нашему SubReddit с 42 тысячами подписчиков.

Статья Microsoft Researchers Introduce MatterSim: A Deep-Learning Model for Materials Under Real-World Conditions впервые появилась на MarkTechPost.

“`

Мобильная разработка на заказ и готовые решения

Мобильная разработка

Готовые и индивидуальные решения

Веб решения - разработка сайтов и сервисов

Web решения

Получите бесплатную консультацию по веб-разработке прямо сейчас

Аутсорсинг, подбор специалистов и команд разработки

Аутсорсинг

Выберите своего специалиста сегодня и начните свой проект

Новости

  • Увеличение разнообразия креативного письма с помощью DPO и ORPO в ИИ моделях

    Улучшение креативного письма с помощью ИИ: Практические решения для бизнеса Понимание проблемы креативного письма в ИИ Креативное письмо требует разнообразия и воображения, что представляет собой уникальную задачу для систем искусственного интеллекта (ИИ). В…

  • Оценка юридических ответов на соответствие GDPR с помощью платформы Atla

    Оценка юридических ответов для соблюдения GDPR с помощью платформы Atla Обзор Данный гид описывает практический подход к оценке качества юридических ответов, сгенерированных языковыми моделями, с использованием платформы Atla и Python SDK. Наша цель…

  • VideoMind: Прорыв в понимании видео с помощью ИИ

    Видеоминд: Применение AI для понимания видео Видеоминд представляет собой значительное достижение в области искусственного интеллекта, особенно в понимании видео. Этот инновационный подход решает уникальные задачи анализа видеоконтента. Понимание задач видеоконтента Видеоматериалы более сложны…

  • Hostinger Horizons: Создавайте веб-приложения без кода с помощью ИИ

    Практические бизнес-решения с использованием Hostinger Horizons Hostinger Horizons предлагает уникальные возможности для бизнеса благодаря своей платформе без кода, которая упрощает создание веб-приложений. Вот как это может улучшить бизнес и реальную жизнь: Преимущества использования…

  • Hunyuan-T1: Революция в Искусственном Интеллекте для Бизнеса

    Практические бизнес-решения Преобразование рабочих процессов Искусственный интеллект может значительно улучшить бизнес-операции. Вот практические шаги, которые стоит рассмотреть: 1. Определите возможности автоматизации Ищите процессы, которые можно автоматизировать для повышения эффективности. 2. Улучшите взаимодействие с…

  • FFN Fusion от NVIDIA: Революция в эффективности больших языковых моделей

    Введение в большие языковые модели Большие языковые модели (LLMs) становятся все более важными в различных секторах, обеспечивая работу приложений, таких как генерация естественного языка и разговорные агенты. Однако с увеличением размера и сложности…

  • UI-R1: Улучшение предсказания действий GUI с помощью обучения с подкреплением

    UI-R1 Framework: Улучшение предсказания действий GUI с помощью ИИ Обзор проблемы Традиционный метод обучения больших языковых моделей (LLMs) и агентов графического пользовательского интерфейса (GUI) требует больших объемов размеченных данных, что приводит к длительным…

  • Эффективное Масштабирование Времени Вывода для Бизнеса

    Оптимизация времени вывода для потоковых моделей: практические бизнес-решения Введение Недавние разработки в области искусственного интеллекта сместили акцент с увеличения размера модели и объема обучающих данных на повышение эффективности вычислений во время вывода. Эта…

  • Устойчивое развитие AI для временных рядов с помощью синтетических данных: инновационный подход Salesforce

    Возможности ИИ для анализа временных рядов с использованием синтетических данных Анализ временных рядов имеет огромное значение для бизнеса, но он сталкивается с проблемами доступности и качества данных. Использование синтетических данных может решить эти…

  • Руководство по решению уравнения Бюргера 1D с помощью PINNs в PyTorch

    Практическое руководство по преобразованию бизнеса с помощью ИИ Это руководство демонстрирует, как использовать физически обоснованные нейронные сети (PINNs) для решения уравнения Бургенса и как такие технологии могут улучшить бизнес-процессы и реальную жизнь. Шаги…

  • Открытие OpenVLThinker-7B: Новый уровень визуального мышления для бизнеса

    Улучшение визуального мышления с OpenVLThinker-7B Понимание проблемы Модели, объединяющие обработку языка и интерпретацию изображений, испытывают трудности с многошаговым мышлением. Это создает проблемы в таких задачах, как понимание графиков и решение визуальных математических задач.…

  • Создание агента по анализу данных с использованием Gemini 2.0 и Google API

    Создание агента научных данных с интеграцией ИИ Введение Этот гид описывает, как создать агента научных данных, используя библиотеку Pandas на Python и возможности генеративного ИИ от Google. Следуя этому руководству, бизнес сможет использовать…

  • TxGemma: Революция в разработке лекарств с помощью ИИ от Google

    Введение в TxGemma Разработка лекарств – это сложный и дорогостоящий процесс. TxGemma от Google AI предлагает инновационные решения для оптимизации этого процесса, что позволяет сэкономить время и ресурсы. Решение TxGemma TxGemma использует большие…

  • Открытый Глубокий Поиск: Демократизация ИИ-поиска с помощью открытых агентов рассуждения

    Практические бизнес-решения на основе Open Deep Search (ODS) 1. Автоматизация процессов Определите области, где ИИ может автоматизировать рутинные задачи, что приведет к повышению эффективности и производительности. 2. Улучшение взаимодействия с клиентами Используйте ИИ…

  • Оценка глубины изображения с использованием Intel MiDaS на Google Colab

    Практические бизнес-решения с использованием оценки глубины через монохромное изображение Оценка глубины из одного RGB-изображения с помощью модели Intel MiDaS может значительно улучшить бизнес-процессы, такие как: Улучшение взаимодействия с клиентами через дополненную реальность. Оптимизация…

  • TokenBridge: Оптимизация токенов для улучшенной визуальной генерации

    TokenBridge: Оптимизация визуальной генерации с помощью ИИ Введение в модели визуальной генерации Модели визуальной генерации на основе автогрессии значительно продвинулись в синтезе изображений, благодаря их способности использовать механизмы предсказания токенов, вдохновленные языковыми моделями.…

  • Колмогоров-Тест: Новый Стандарт Оценки Моделей Генерации Кода

    П practical business solutions Чтобы использовать возможности ИИ в вашем бизнесе, рассмотрите следующие стратегии: 1. Определите возможности автоматизации Ищите повторяющиеся задачи или взаимодействия с клиентами, которые ИИ может оптимизировать. Это поможет сократить время…

  • CaMeL: Надежная защита больших языковых моделей от атак

    Улучшение безопасности с помощью CaMeL Введение в проблему Большие языковые модели (LLM) играют важную роль в современных технологиях, но сталкиваются с угрозами безопасности, такими как атаки через инъекции команд. Эти угрозы могут привести…