Предлагаются закономерности масштабирования наблюдений в машинном обучении: обнаружена предсказуемость сложных явлений масштабирования.

 This Machine Learning Paper from Stanford and the University of Toronto Proposes Observational Scaling Laws: Highlighting the Surprising Predictability of Complex Scaling Phenomena

Исследование машинного обучения от Стэнфордского университета и Университета Торонто предлагает наблюдательные законы масштабирования: выявляется удивительная предсказуемость сложных явлений масштабирования

Модели языка (LMs) являются основой исследований в области искусственного интеллекта, сосредоточенных на способности понимать и генерировать человеческий язык. Разработчики стремятся улучшить эти модели для выполнения различных сложных задач, включая обработку естественного языка, перевод и творческое письмо. Это направление изучает, как LMs учатся, адаптируются и масштабируют свои возможности с увеличением вычислительных ресурсов. Понимание этих масштабируемых характеристик является важным для прогнозирования будущих возможностей и оптимизации ресурсов, необходимых для обучения и развертывания этих моделей.

Основные вызовы в исследовании моделей языка

Основное препятствие в исследовании моделей языка заключается в понимании того, как производительность модели масштабируется в зависимости от объема вычислительной мощности и данных, используемых во время обучения. Это масштабирование является ключевым для прогнозирования будущих возможностей и оптимизации использования ресурсов. Традиционные методы требуют обширного обучения на различных уровнях, что является вычислительно затратным и занимает много времени. Это создает значительное препятствие для многих исследователей и инженеров, которым необходимо понять эти взаимосвязи для улучшения разработки и применения моделей.

Практические решения и ценность

Существующие исследования включают различные фреймворки и модели для понимания производительности моделей языка. Значимы среди них законы масштабирования вычислений, которые анализируют отношение между вычислительными ресурсами и возможностями моделей. Инструменты, такие как Open LLM Leaderboard, LM Eval Harness, и бенчмарки, такие как MMLU, ARC-C и HellaSwag, широко используются. Кроме того, модели, такие как LLaMA, GPT-Neo и BLOOM, предоставляют разнообразные примеры того, как законы масштабирования могут быть применены. Эти фреймворки и бенчмарки помогают исследователям оценивать и оптимизировать производительность моделей языка на различных вычислительных уровнях и задачах.

Исследователи из Стэнфордского университета, Университета Торонто и Института Vector представили наблюдательные законы масштабирования для улучшения прогнозирования производительности моделей языка. Этот метод использует публично доступные модели для создания законов масштабирования, сокращая необходимость в обширном обучении. За счет использования существующих данных от приблизительно 80 моделей исследователи смогли создать обобщенный закон масштабирования, учитывающий изменения в эффективности обучения вычислительных ресурсов. Этот инновационный подход предлагает экономически эффективный и эффективный способ прогнозирования производительности модели на различных уровнях и возможностях, выделяя его из традиционных методов масштабирования.

Методология анализирует данные о производительности приблизительно 80 публично доступных моделей языка, включая Open LLM Leaderboard и стандартизированные бенчмарки, такие как MMLU, ARC-C и HellaSwag. Исследователи предположили, что производительность модели может быть отображена в пространство возможностей низкой размерности. Они разработали обобщенный закон масштабирования, исследуя изменения в эффективности обучения вычислительных ресурсов среди различных семейств моделей. Этот процесс включал использование метода анализа главных компонент (PCA) для выявления ключевых показателей возможностей и подгонки этих показателей в логарифмическую зависимость от вычислительных ресурсов, обеспечивая точные и высокоразрешенные прогнозы производительности.

Исследование продемонстрировало значительный успех наблюдательных законов масштабирования. Например, используя более простые модели, метод точно предсказал производительность продвинутых моделей, таких как GPT-4. Количественно законы масштабирования показали высокую корреляцию (R² > 0,9) с фактической производительностью на различных бенчмарках. Возникающие явления, такие как понимание языка и способности к рассуждению, следовали предсказуемому сигмоидальному образцу. Результаты также указывали на то, что воздействие пост-тренировочных вмешательств, таких как Chain-of-Thought и Self-Consistency, можно надежно предсказать, показывая улучшение производительности до 20% в конкретных задачах.

В заключение, исследование представляет наблюдательные законы масштабирования, используя публично доступные данные от примерно 80 моделей для эффективного прогнозирования производительности модели языка. Путем определения пространства возможностей низкой размерности и использования обобщенных законов масштабирования, исследование сокращает необходимость в обширном обучении модели. Результаты показали высокую предсказательную точность для производительности продвинутых моделей и пост-тренировочных вмешательств. Этот подход экономит вычислительные ресурсы и улучшает возможность прогнозирования возможностей модели, предоставляя ценный инструмент для исследователей и инженеров в оптимизации разработки модели языка.

Проверьте Статью. Вся заслуга за это исследование принадлежит исследователям этого проекта. Также не забудьте подписаться на наш Twitter. Присоединяйтесь к нашему каналу в Telegram, серверу в Discord и группе в LinkedIn.

Если вам нравится наша работа, вам понравится наша рассылка.

Не забудьте присоединиться к нашему сообществу в Reddit с более чем 42 тысячами подписчиков.

Этот пост был опубликован на MarkTechPost.

Предложение консультаций по внедрению ИИ в ваш бизнес

Если вы хотите, чтобы ваша компания развивалась с помощью искусственного интеллекта (ИИ) и оставалась в числе лидеров, грамотно используйте This Machine Learning Paper from Stanford and the University of Toronto Proposes Observational Scaling Laws: Highlighting the Surprising Predictability of Complex Scaling Phenomena.

Проанализируйте, как ИИ может изменить вашу работу. Определите, где возможно применение автоматизации: найдите моменты, когда ваши клиенты могут извлечь выгоду из AI.

Определитесь какие ключевые показатели эффективности (KPI): вы хотите улучшить с помощью ИИ.

Подберите подходящее решение, сейчас очень много вариантов ИИ. Внедряйте ИИ решения постепенно: начните с малого проекта, анализируйте результаты и KPI.

На полученных данных и опыте расширяйте автоматизацию.

Если вам нужны советы по внедрению ИИ, пишите нам на https://t.me/flycodetelegram.

Попробуйте ИИ ассистент в продажах https://flycode.ru/aisales/ Этот ИИ ассистент в продажах, помогает отвечать на вопросы клиентов, генерировать контент для отдела продаж, снижать нагрузку на первую линию.

Узнайте, как ИИ может изменить ваши процессы с решениями от Flycode.ru

Мобильная разработка на заказ и готовые решения

Мобильная разработка

Готовые и индивидуальные решения

Веб решения - разработка сайтов и сервисов

Web решения

Получите бесплатную консультацию по веб-разработке прямо сейчас

Аутсорсинг, подбор специалистов и команд разработки

Аутсорсинг

Выберите своего специалиста сегодня и начните свой проект

Новости

  • Создание индивидуального клиента MCP с использованием Gemini

    Создание клиентского приложения Model Context Protocol (MCP) с использованием Gemini Практические бизнес-решения Создание клиентского приложения MCP с использованием Gemini позволяет интегрировать искусственный интеллект в бизнес-процессы. Это улучшает взаимодействие с клиентами, оптимизирует рабочие процессы…

  • Улучшение многомодального обучения: рамки UniME

    Введение в многомодальное представление данных Многомодальное представление данных – это новая область в искусственном интеллекте, которая объединяет различные типы данных, такие как текст и изображения, для создания более полных и точных моделей. Один…

  • Модель THINKPRM: Преобразование бизнеса с помощью ИИ

    Преобразование бизнеса с помощью ИИ: Модель THINKPRM Введение в THINKPRM Модель THINKPRM (Generative Process Reward Model) представляет собой значительное достижение в верификации процессов рассуждения с использованием искусственного интеллекта. Эта модель повышает эффективность и…

  • Улучшение бизнеса с помощью разговорного ИИ

    “`html Улучшение бизнеса с помощью разговорного ИИ Введение в вызов функций в разговорном ИИ Вызов функций — это мощная возможность, которая позволяет большим языковым моделям (LLM) связывать естественные языковые запросы с реальными приложениями,…

  • VERSA: Инновационный инструмент для оценки аудиосигналов

    Введение в VERSA: Современный инструмент для оценки аудио Команда WAVLab представила VERSA, инновационный и комплексный набор инструментов для оценки речи, аудио и музыкальных сигналов. С развитием искусственного интеллекта, который генерирует аудио, необходимость в…

  • Alibaba Qwen3: Новое Поколение Языковых Моделей

    Введение в Qwen3: Новая эра в больших языковых моделях Команда Alibaba Qwen недавно представила Qwen3, последнее достижение в серии больших языковых моделей (LLMs). Qwen3 предлагает новый набор моделей, оптимизированных для различных приложений, включая…

  • ViSMaP: Инновационное решение для автоматизации суммирования длинных видео

    Преобразование видео: ViSMaP ViSMaP представляет собой инновационный подход к обобщению длинных видео без необходимости в дорогих аннотациях. Это решение может значительно улучшить бизнес и повседневную жизнь, а именно: Преимущества ViSMaP Сокращение временных затрат…

  • Эффективное управление контекстом для больших языковых моделей

    Модель Контекстного Протокола: Улучшение Взаимодействия с ИИ Введение Эффективное управление контекстом является ключевым при использовании больших языковых моделей (LLMs). Этот документ предлагает практическую реализацию Модели Контекстного Протокола (MCP), сосредоточенную на семантическом делении, динамическом…

  • Запуск DeepWiki: ИИ-инструмент для понимания репозиториев GitHub

    Введение в DeepWiki Devin AI представил DeepWiki — бесплатный инструмент, который генерирует структурированную документацию для репозиториев GitHub. Этот инновационный инструмент упрощает понимание сложных кодовых баз, что облегчает жизнь разработчикам, работающим с незнакомыми проектами.…

  • Эффективные модели Tina для улучшения обучения с подкреплением

    Введение Современные бизнесы сталкиваются с вызовами в области многослойного рассуждения, особенно в научных исследованиях и стратегическом планировании. Традиционные методы, такие как узконаправленное обучение, требуют значительных затрат и могут приводить к поверхностному обучению. Однако…

  • FlowReasoner: Персонализированный Мета-Агент для Многоагентных Систем

    Введение в FlowReasoner Недавние достижения в области искусственного интеллекта привели к разработке FlowReasoner, мета-агента, который автоматизирует создание персонализированных многопользовательских систем, адаптированных к запросам пользователей. Это значительно повышает эффективность и масштабируемость. Проблемы в текущих…

  • Руководство Microsoft по режимам отказа в агентных системах ИИ

    Введение Понимание и управление рисками в системах агентного ИИ могут значительно улучшить бизнес-процессы и повысить доверие клиентов. Ниже представлены практические решения, которые помогут в этом. Практические бизнес-решения Создание надежных систем агентного ИИ требует…

  • Автономные пайплайны анализа данных с PraisonAI

    Создание полностью автономных потоков анализа данных с PraisonAI Введение В этом руководстве описывается, как бизнес может улучшить процессы анализа данных, перейдя от ручного кодирования к полностью автономным потокам данных, управляемым ИИ. Используя платформу…

  • QuaDMix: Инновационная Оптимизация Качества и Разнообразия Данных в AI

    Практические бизнес-решения с использованием QuaDMix Имплементация QuaDMix может существенно улучшить AI-приложения благодаря следующим ключевым аспектам: 1. Упрощение кураторства данных Используйте QuaDMix для поддержания высокого качества данных без жертвы разнообразием, что приведет к более…

  • Оптимизация методов масштабирования для повышения эффективности reasoning в языковых моделях

    “`html Оптимизация Производительности Размышлений в Языковых Моделях: Практические Бизнес-Решения Понимание Методов Масштабирования во Время Вывода Языковые модели могут выполнять множество задач, но часто сталкиваются с трудностями при сложном размышлении. Методы масштабирования вычислений во…

  • Интеграция API Gemini с агентами LangGraph для оптимизации рабочих процессов ИИ

    Улучшение рабочих процессов с помощью интеграции Arcade и Gemini API Этот документ описывает, как преобразовать статические разговорные интерфейсы в динамичных, действующих ИИ-ассистентов с использованием Arcade и Gemini Developer API. Используя набор готовых инструментов,…

  • СоциоВерс: Революционная Модель Социальной Симуляции на Основе LLM

    Использование ИИ для Социальной Симуляции: Инициатива SocioVerse Введение в SocioVerse Исследователи из Университета Фудань разработали SocioVerse, инновационную модель мира, использующую агентов на основе больших языковых моделей (LLM) для симуляции социальных динамик. Эта модель…

  • Токен-Шаффл: Революция в генерации высококачественных изображений с помощью трансформеров

    Введение в Token-Shuffle Meta AI представила инновационный метод, известный как Token-Shuffle, который повышает эффективность генерации изображений в авторегрессионных (AR) моделях. Этот подход решает вычислительные задачи, связанные с созданием изображений высокого разрешения, что может…