Предлагаются закономерности масштабирования наблюдений в машинном обучении: обнаружена предсказуемость сложных явлений масштабирования.

 This Machine Learning Paper from Stanford and the University of Toronto Proposes Observational Scaling Laws: Highlighting the Surprising Predictability of Complex Scaling Phenomena

Исследование машинного обучения от Стэнфордского университета и Университета Торонто предлагает наблюдательные законы масштабирования: выявляется удивительная предсказуемость сложных явлений масштабирования

Модели языка (LMs) являются основой исследований в области искусственного интеллекта, сосредоточенных на способности понимать и генерировать человеческий язык. Разработчики стремятся улучшить эти модели для выполнения различных сложных задач, включая обработку естественного языка, перевод и творческое письмо. Это направление изучает, как LMs учатся, адаптируются и масштабируют свои возможности с увеличением вычислительных ресурсов. Понимание этих масштабируемых характеристик является важным для прогнозирования будущих возможностей и оптимизации ресурсов, необходимых для обучения и развертывания этих моделей.

Основные вызовы в исследовании моделей языка

Основное препятствие в исследовании моделей языка заключается в понимании того, как производительность модели масштабируется в зависимости от объема вычислительной мощности и данных, используемых во время обучения. Это масштабирование является ключевым для прогнозирования будущих возможностей и оптимизации использования ресурсов. Традиционные методы требуют обширного обучения на различных уровнях, что является вычислительно затратным и занимает много времени. Это создает значительное препятствие для многих исследователей и инженеров, которым необходимо понять эти взаимосвязи для улучшения разработки и применения моделей.

Практические решения и ценность

Существующие исследования включают различные фреймворки и модели для понимания производительности моделей языка. Значимы среди них законы масштабирования вычислений, которые анализируют отношение между вычислительными ресурсами и возможностями моделей. Инструменты, такие как Open LLM Leaderboard, LM Eval Harness, и бенчмарки, такие как MMLU, ARC-C и HellaSwag, широко используются. Кроме того, модели, такие как LLaMA, GPT-Neo и BLOOM, предоставляют разнообразные примеры того, как законы масштабирования могут быть применены. Эти фреймворки и бенчмарки помогают исследователям оценивать и оптимизировать производительность моделей языка на различных вычислительных уровнях и задачах.

Исследователи из Стэнфордского университета, Университета Торонто и Института Vector представили наблюдательные законы масштабирования для улучшения прогнозирования производительности моделей языка. Этот метод использует публично доступные модели для создания законов масштабирования, сокращая необходимость в обширном обучении. За счет использования существующих данных от приблизительно 80 моделей исследователи смогли создать обобщенный закон масштабирования, учитывающий изменения в эффективности обучения вычислительных ресурсов. Этот инновационный подход предлагает экономически эффективный и эффективный способ прогнозирования производительности модели на различных уровнях и возможностях, выделяя его из традиционных методов масштабирования.

Методология анализирует данные о производительности приблизительно 80 публично доступных моделей языка, включая Open LLM Leaderboard и стандартизированные бенчмарки, такие как MMLU, ARC-C и HellaSwag. Исследователи предположили, что производительность модели может быть отображена в пространство возможностей низкой размерности. Они разработали обобщенный закон масштабирования, исследуя изменения в эффективности обучения вычислительных ресурсов среди различных семейств моделей. Этот процесс включал использование метода анализа главных компонент (PCA) для выявления ключевых показателей возможностей и подгонки этих показателей в логарифмическую зависимость от вычислительных ресурсов, обеспечивая точные и высокоразрешенные прогнозы производительности.

Исследование продемонстрировало значительный успех наблюдательных законов масштабирования. Например, используя более простые модели, метод точно предсказал производительность продвинутых моделей, таких как GPT-4. Количественно законы масштабирования показали высокую корреляцию (R² > 0,9) с фактической производительностью на различных бенчмарках. Возникающие явления, такие как понимание языка и способности к рассуждению, следовали предсказуемому сигмоидальному образцу. Результаты также указывали на то, что воздействие пост-тренировочных вмешательств, таких как Chain-of-Thought и Self-Consistency, можно надежно предсказать, показывая улучшение производительности до 20% в конкретных задачах.

В заключение, исследование представляет наблюдательные законы масштабирования, используя публично доступные данные от примерно 80 моделей для эффективного прогнозирования производительности модели языка. Путем определения пространства возможностей низкой размерности и использования обобщенных законов масштабирования, исследование сокращает необходимость в обширном обучении модели. Результаты показали высокую предсказательную точность для производительности продвинутых моделей и пост-тренировочных вмешательств. Этот подход экономит вычислительные ресурсы и улучшает возможность прогнозирования возможностей модели, предоставляя ценный инструмент для исследователей и инженеров в оптимизации разработки модели языка.

Проверьте Статью. Вся заслуга за это исследование принадлежит исследователям этого проекта. Также не забудьте подписаться на наш Twitter. Присоединяйтесь к нашему каналу в Telegram, серверу в Discord и группе в LinkedIn.

Если вам нравится наша работа, вам понравится наша рассылка.

Не забудьте присоединиться к нашему сообществу в Reddit с более чем 42 тысячами подписчиков.

Этот пост был опубликован на MarkTechPost.

Предложение консультаций по внедрению ИИ в ваш бизнес

Если вы хотите, чтобы ваша компания развивалась с помощью искусственного интеллекта (ИИ) и оставалась в числе лидеров, грамотно используйте This Machine Learning Paper from Stanford and the University of Toronto Proposes Observational Scaling Laws: Highlighting the Surprising Predictability of Complex Scaling Phenomena.

Проанализируйте, как ИИ может изменить вашу работу. Определите, где возможно применение автоматизации: найдите моменты, когда ваши клиенты могут извлечь выгоду из AI.

Определитесь какие ключевые показатели эффективности (KPI): вы хотите улучшить с помощью ИИ.

Подберите подходящее решение, сейчас очень много вариантов ИИ. Внедряйте ИИ решения постепенно: начните с малого проекта, анализируйте результаты и KPI.

На полученных данных и опыте расширяйте автоматизацию.

Если вам нужны советы по внедрению ИИ, пишите нам на https://t.me/flycodetelegram.

Попробуйте ИИ ассистент в продажах https://flycode.ru/aisales/ Этот ИИ ассистент в продажах, помогает отвечать на вопросы клиентов, генерировать контент для отдела продаж, снижать нагрузку на первую линию.

Узнайте, как ИИ может изменить ваши процессы с решениями от Flycode.ru

Мобильная разработка на заказ и готовые решения

Мобильная разработка

Готовые и индивидуальные решения

Веб решения - разработка сайтов и сервисов

Web решения

Получите бесплатную консультацию по веб-разработке прямо сейчас

Аутсорсинг, подбор специалистов и команд разработки

Аутсорсинг

Выберите своего специалиста сегодня и начните свой проект

Новости

  • Оптимизация бюджета вывода для моделей самосогласованности и генеративных вознаграждений в ИИ

    Введение в оценку бюджета вывода с помощью ИИ Данный документ представляет собой практическое решение для оценки бюджета вывода при использовании ИИ в бизнесе. Внедрение искусственного интеллекта может значительно улучшить результаты работы организации. Шаги…

  • Agent2Agent: Новый Протокол Сотрудничества AI Агентов

    Преобразование бизнеса с помощью Agent2Agent Google представил Agent2Agent (A2A) — инновационный протокол, который позволяет AI-агентам безопасно сотрудничать на различных платформах. Этот протокол упрощает рабочие процессы, вовлекающие несколько специализированных AI-агентов, улучшая их взаимодействие. Преимущества…

  • Запуск набора инструментов разработки агентов (ADK) от Google для многопользовательских систем

    Введение в ADK Google недавно представила набор инструментов для разработки агентов (ADK), который является открытым фреймворком для разработки, управления и развертывания многопользовательских систем. Этот фреймворк написан на Python и подходит для различных приложений,…

  • Роль “впитывающих” вниманий в стабилизации больших языковых моделей

    Понимание “впитывающих” механизмов внимания в больших языковых моделях Большие языковые модели (LLMs) имеют уникальное поведение, известное как “впитывающие” механизмы внимания. Это явление имеет значительные последствия для стабильности и производительности моделей, что может улучшить…

  • TorchSim: Революция в атомистических симуляциях с помощью PyTorch

    Введение в TorchSim TorchSim – это инновационный движок атомистического моделирования, который значительно улучшает симуляции материалов, делая их быстрее и эффективнее традиционных методов. Это позволяет отдельным ученым решать несколько задач одновременно. Ключевые особенности TorchSim…

  • API Evals от OpenAI: Оптимизация оценки моделей для бизнеса

    Введение в Evals API OpenAI представила Evals API, мощный инструмент для упрощения оценки больших языковых моделей (LLMs) для разработчиков и команд. Этот новый API позволяет программно проводить оценку, позволяя разработчикам определять тесты, автоматизировать…

  • Запуск моделей APIGen-MT и xLAM-2-fc-r для обучения агентов с многоходовыми взаимодействиями

    Введение Инновационные модели Salesforce AI, APIGen-MT и xLAM-2-fc-r, значительно улучшают способности AI-агентов в управлении сложными многоуровневыми взаимодействиями. Эти решения особенно актуальны для бизнеса, который зависит от эффективной коммуникации и выполнения задач. Проблема многоуровневых…

  • Huawei Dream 7B: Революционная Модель Диффузионного Размышления для Бизнеса

    Практические бизнес-решения на основе Dream 7B Модель Dream 7B от Huawei предлагает революционные возможности для автоматизации и улучшения бизнес-процессов. Внедрение этой технологии может значительно повысить эффективность и качество работы организаций. Как улучшить бизнес…

  • МегаСкейл-Инфер: Революционная система для эффективного обслуживания LLM на основе MoE

    Введение MegaScale-Infer: Оптимизация Производительности Больших Языковых Моделей Большие языковые модели (LLMs) играют важную роль в различных приложениях, таких как чат-боты и генерация кода. Однако с увеличением их размеров возникают проблемы с эффективностью вычислений.…

  • Инновации в тактильном восприятии: решение для бизнеса с использованием ИИ

    Преобразование тактильного восприятия с помощью ИИ: Практические бизнес-решения Понимание технологии тактильного восприятия Тактильное восприятие необходимо для эффективного взаимодействия интеллектуальных систем с физической средой. Технологии, такие как сенсор GelSight, предоставляют подробную информацию о контактных…

  • LLM+FOON: Улучшение планирования кулинарных задач для роботов

    Введение Разработка роботов для домашнего использования, особенно в кулинарии, становится все более актуальной. Эти роботы должны выполнять различные задачи, требующие визуальной интерпретации, манипуляции и принятия решений. Использование LLM+FOON фреймворка может значительно улучшить планирование…

  • Создание локального RAG-пайплайна с Ollama и DeepSeek-R1 на Google Colab

    Практические бизнес-решения с использованием RAG-пайплайна Создание RAG-пайплайна с использованием Ollama и Google Colab может значительно улучшить бизнес и повседневную жизнь. Вот как это может повысить результаты бизнеса: Преимущества Эффективный доступ к информации из…

  • Улучшение моделей рассуждений с помощью масштабирования во время вывода

    Введение Искусственный интеллект может существенно улучшить бизнес-процессы, особенно в области сложного решения задач. Следуя новейшим исследованиям в области масштабирования языковых моделей, можно улучшить качества рассуждений и значительно повысить эффективность работы. Проблемы текущих моделей…

  • RARE: Масштабируемая AI-структура для улучшения специфического рассуждения

    Введение Современные достижения в области больших языковых моделей (LLMs) продемонстрировали впечатляющие возможности в различных задачах. Однако они часто сталкиваются с трудностями в специализированных областях, требующих глубоких знаний и рассуждений. Это ограничение связано с…

  • OceanSim: Инновационный GPU-ускоренный симулятор подводной robotics

    Введение в OceanSim: Преобразование симуляции подводной робототехники OceanSim – это современная платформа для симуляции подводной робототехники, разработанная Университетом Мичигана. Она использует высокопроизводительное GPU-ускорение, что делает ее ценным инструментом для таких приложений, как морская…

  • Генератор питчей для стартапов на основе AI

    Создание генератора питчей для стартапов на базе ИИ Данный гид предлагает простой подход к созданию приложения, использующего ИИ для генерации идей питчей для стартапов. Используя модель Google Gemini Pro вместе с фреймворком LiteLLM,…

  • MMSearch-R1: Новые горизонты для бизнес-ИИ

    MMSearch-R1: Улучшение возможностей ИИ в бизнесе Введение в большие мультимодальные модели (LMM) Большие мультимодальные модели (LMM) значительно продвинулись в понимании и обработке визуальных и текстовых данных. Однако они сталкиваются с проблемами при работе…

  • Масштабируемое Моделирование Наград для AI: Улучшение Общих Моделей Наград с SPCT

    Улучшение моделей вознаграждения для приложений ИИ Введение в моделирование вознаграждения Метод обучения с подкреплением (RL) стал ключевым методом для улучшения возможностей больших языковых моделей (LLMs). Мы можем применять RL, чтобы модели лучше понимали…