Улучшение эффективности и гибкости в мультимодельном машинном обучении с помощью адаптивной визуальной токенизации: модели Матрешка

 Matryoshka Multimodal Models With Adaptive Visual Tokenization: Enhancing Efficiency and Flexibility in Multimodal Machine Learning

“`html

Мультимодальное машинное обучение: практические решения и ценность

Мультимодальное машинное обучение – это передовое исследовательское направление, объединяющее различные типы данных, такие как текст, изображения и звук, для создания более полных и точных моделей. Интеграция различных модальностей позволяет моделям лучше понимать и решать сложные задачи, что приводит к улучшению производительности в таких областях, как распознавание изображений, обработка естественного языка, анализ видео и другие.

Проблема и практическое решение

Основная проблема в мультимодальном машинном обучении заключается в неэффективности и негибкости больших мультимодальных моделей (LMMs) при работе с высокоразрешенными изображениями и видео. Традиционные LMMs, такие как LLaVA, используют фиксированное количество визуальных токенов для представления изображения, что часто приводит к избыточному количеству токенов для плотного визуального контента. Это увеличивает вычислительные затраты и ухудшает производительность, перегружая модель излишней информацией. В результате необходимы методы, способные динамически адаптировать количество токенов в зависимости от сложности визуального входа.

Существующие решения этой проблемы, такие как обрезка и объединение токенов, пытаются уменьшить количество визуальных токенов, поступающих в языковую модель. Однако эти методы обычно генерируют фиксированную длину вывода для каждого изображения, что не позволяет гибко балансировать плотность информации и эффективность. Они должны адаптироваться к различным уровням визуальной сложности, что может быть критично в приложениях, где визуальный контент значительно варьируется от кадра к кадру.

Университет Висконсина-Мэдисон и исследователи Microsoft Research представили модель Matryoshka Multimodal Models (M3). Вдохновленная концепцией матрешек, M3 представляет визуальный контент в виде вложенных наборов визуальных токенов, охватывающих информацию на нескольких уровнях детализации. Такой подход позволяет явно контролировать визуальную детализацию во время вывода, обеспечивая адаптацию количества токенов в зависимости от предполагаемой сложности или простоты контента.

Модель M3 достигает этого путем кодирования изображений в несколько наборов визуальных токенов с увеличением уровней детализации, от грубой к более подробной. В процессе обучения модель учится получать более грубые токены из более подробных, обеспечивая эффективное охватывание визуальной информации. В частности, модель использует масштабы, такие как 1, 9, 36, 144 и 576 токенов, причем каждый уровень обеспечивает постепенно более детальное представление визуального контента. Эта иерархическая структура позволяет модели сохранять пространственную информацию, адаптируя уровень детализации в соответствии с конкретными требованиями.

Экспертиза модели M3 подтверждает ее значительные преимущества. На бенчмарках в стиле COCO модель достигла точности, сопоставимой с использованием всех 576 токенов, но лишь с использованием примерно 9 токенов на изображение. Это представляет собой существенное улучшение эффективности без ущерба точности. Модель M3 также успешно прошла другие тесты, показав, что она может поддерживать высокую производительность даже при резком сокращении количества токенов. Например, точность модели с 9 токенами была сопоставима с Qwen-VL-Chat с 256 токенами, и в некоторых случаях она достигала аналогичной производительности всего с 1 токеном.

Модель может адаптироваться к различным вычислительным и памятным ограничениям во время внедрения, обеспечивая гибкий контроль над количеством визуальных токенов. Эта гибкость особенно ценна в реальных приложениях, где ресурсы могут быть ограничены. Подход M3 также предоставляет рамки для оценки визуальной сложности наборов данных, помогая исследователям понять оптимальную детализацию, необходимую для различных задач. Например, в то время как естественные сценарии, подобные COCO, могут быть обработаны с использованием примерно 9 токенов, плотные задачи визуального восприятия, такие как понимание документов или OCR, требуют большего количества токенов, от 144 до 576.

В заключение, Matryoshka Multimodal Models (M3) решает проблемы текущих LMMs и предоставляет гибкий, адаптивный метод представления визуального контента, создавая условия для более эффективных мультимодальных систем. Способность модели динамически адаптировать количество визуальных токенов в зависимости от сложности контента обеспечивает лучший баланс между производительностью и вычислительными затратами. Этот инновационный подход улучшает способности мультимодальных моделей в понимании и рассуждении, открывая новые возможности для их применения в различных и ресурсо-ограниченных средах.

“`

Мобильная разработка на заказ и готовые решения

Мобильная разработка

Готовые и индивидуальные решения

Веб решения - разработка сайтов и сервисов

Web решения

Получите бесплатную консультацию по веб-разработке прямо сейчас

Аутсорсинг, подбор специалистов и команд разработки

Аутсорсинг

Выберите своего специалиста сегодня и начните свой проект

Новости

  • Роль “впитывающих” вниманий в стабилизации больших языковых моделей

    Понимание “впитывающих” механизмов внимания в больших языковых моделях Большие языковые модели (LLMs) имеют уникальное поведение, известное как “впитывающие” механизмы внимания. Это явление имеет значительные последствия для стабильности и производительности моделей, что может улучшить…

  • TorchSim: Революция в атомистических симуляциях с помощью PyTorch

    Введение в TorchSim TorchSim – это инновационный движок атомистического моделирования, который значительно улучшает симуляции материалов, делая их быстрее и эффективнее традиционных методов. Это позволяет отдельным ученым решать несколько задач одновременно. Ключевые особенности TorchSim…

  • API Evals от OpenAI: Оптимизация оценки моделей для бизнеса

    Введение в Evals API OpenAI представила Evals API, мощный инструмент для упрощения оценки больших языковых моделей (LLMs) для разработчиков и команд. Этот новый API позволяет программно проводить оценку, позволяя разработчикам определять тесты, автоматизировать…

  • Запуск моделей APIGen-MT и xLAM-2-fc-r для обучения агентов с многоходовыми взаимодействиями

    Введение Инновационные модели Salesforce AI, APIGen-MT и xLAM-2-fc-r, значительно улучшают способности AI-агентов в управлении сложными многоуровневыми взаимодействиями. Эти решения особенно актуальны для бизнеса, который зависит от эффективной коммуникации и выполнения задач. Проблема многоуровневых…

  • Huawei Dream 7B: Революционная Модель Диффузионного Размышления для Бизнеса

    Практические бизнес-решения на основе Dream 7B Модель Dream 7B от Huawei предлагает революционные возможности для автоматизации и улучшения бизнес-процессов. Внедрение этой технологии может значительно повысить эффективность и качество работы организаций. Как улучшить бизнес…

  • МегаСкейл-Инфер: Революционная система для эффективного обслуживания LLM на основе MoE

    Введение MegaScale-Infer: Оптимизация Производительности Больших Языковых Моделей Большие языковые модели (LLMs) играют важную роль в различных приложениях, таких как чат-боты и генерация кода. Однако с увеличением их размеров возникают проблемы с эффективностью вычислений.…

  • Инновации в тактильном восприятии: решение для бизнеса с использованием ИИ

    Преобразование тактильного восприятия с помощью ИИ: Практические бизнес-решения Понимание технологии тактильного восприятия Тактильное восприятие необходимо для эффективного взаимодействия интеллектуальных систем с физической средой. Технологии, такие как сенсор GelSight, предоставляют подробную информацию о контактных…

  • LLM+FOON: Улучшение планирования кулинарных задач для роботов

    Введение Разработка роботов для домашнего использования, особенно в кулинарии, становится все более актуальной. Эти роботы должны выполнять различные задачи, требующие визуальной интерпретации, манипуляции и принятия решений. Использование LLM+FOON фреймворка может значительно улучшить планирование…

  • Создание локального RAG-пайплайна с Ollama и DeepSeek-R1 на Google Colab

    Практические бизнес-решения с использованием RAG-пайплайна Создание RAG-пайплайна с использованием Ollama и Google Colab может значительно улучшить бизнес и повседневную жизнь. Вот как это может повысить результаты бизнеса: Преимущества Эффективный доступ к информации из…

  • Улучшение моделей рассуждений с помощью масштабирования во время вывода

    Введение Искусственный интеллект может существенно улучшить бизнес-процессы, особенно в области сложного решения задач. Следуя новейшим исследованиям в области масштабирования языковых моделей, можно улучшить качества рассуждений и значительно повысить эффективность работы. Проблемы текущих моделей…

  • RARE: Масштабируемая AI-структура для улучшения специфического рассуждения

    Введение Современные достижения в области больших языковых моделей (LLMs) продемонстрировали впечатляющие возможности в различных задачах. Однако они часто сталкиваются с трудностями в специализированных областях, требующих глубоких знаний и рассуждений. Это ограничение связано с…

  • OceanSim: Инновационный GPU-ускоренный симулятор подводной robotics

    Введение в OceanSim: Преобразование симуляции подводной робототехники OceanSim – это современная платформа для симуляции подводной робототехники, разработанная Университетом Мичигана. Она использует высокопроизводительное GPU-ускорение, что делает ее ценным инструментом для таких приложений, как морская…

  • Генератор питчей для стартапов на основе AI

    Создание генератора питчей для стартапов на базе ИИ Данный гид предлагает простой подход к созданию приложения, использующего ИИ для генерации идей питчей для стартапов. Используя модель Google Gemini Pro вместе с фреймворком LiteLLM,…

  • MMSearch-R1: Новые горизонты для бизнес-ИИ

    MMSearch-R1: Улучшение возможностей ИИ в бизнесе Введение в большие мультимодальные модели (LMM) Большие мультимодальные модели (LMM) значительно продвинулись в понимании и обработке визуальных и текстовых данных. Однако они сталкиваются с проблемами при работе…

  • Масштабируемое Моделирование Наград для AI: Улучшение Общих Моделей Наград с SPCT

    Улучшение моделей вознаграждения для приложений ИИ Введение в моделирование вознаграждения Метод обучения с подкреплением (RL) стал ключевым методом для улучшения возможностей больших языковых моделей (LLMs). Мы можем применять RL, чтобы модели лучше понимали…

  • Архитектура трансфузии: Повышение креативности GPT-4o в бизнесе

    Преобразование AI с помощью архитектуры Transfusion Введение в GPT-4o и архитектуру Transfusion GPT-4o от OpenAI представляет собой значительное достижение в области мультимодального искусственного интеллекта, объединяя генерацию текста и изображений в одном выходе. Архитектура…

  • Графы атрибуции: Новый подход к интерпретируемости ИИ

    Введение Недавние разработки в области искусственного интеллекта, такие как графы атрибуции, открывают новые горизонты для понимания работы AI-моделей. Это позволяет компаниям лучше доверять и использовать ИИ в своих бизнес-процессах. Проблема интерпретируемости ИИ Одной…

  • Оценка надежности цепочечного рассуждения в ИИ: Исследования Anthropic

    Улучшение прозрачности и безопасности ИИ Введение в цепочку размышлений Цепочка размышлений (CoT) представляет собой значительное достижение в области искусственного интеллекта (ИИ). Этот подход позволяет моделям ИИ формулировать свои шаги рассуждений перед тем, как…