Эффективное совместное проектирование аппаратного и программного обеспечения для искусственного интеллекта с вычислениями в памяти и оптимизацией аппаратной части.

 Efficient Hardware-Software Co-Design for AI with In-Memory Computing and HW-NAS Optimization

“`html

Эффективное аппаратно-программное совместное проектирование для искусственного интеллекта с использованием вычислений в памяти и оптимизации HW-NAS

Быстрый рост искусственного интеллекта и сложных нейронных сетей требует эффективного аппаратного обеспечения, которое соответствует ограничениям по мощности и ресурсам. Вычисления в памяти (IMC) представляют собой многообещающее решение для разработки различных устройств и архитектур IMC. Проектирование и развертывание этих систем требует комплексной цепочки инструментов для совместного проектирования аппаратного и программного обеспечения, которая оптимизирует работу устройств, схем и алгоритмов. Интернет вещей (IoT) увеличивает генерацию данных, требуя продвинутых возможностей обработки ИИ. Эффективные ускорители глубокого обучения, особенно для обработки на краю, получают преимущества от IMC за счет снижения затрат на перемещение данных и улучшения энергоэффективности и задержки, что требует автоматизированной оптимизации множества параметров проектирования.

Исследователи из нескольких учреждений, включая Университет Короля Абдуллы по науке и технологии, Rain Neuromorphics и IBM Research, исследовали аппаратно-ориентированный поиск нейронной архитектуры (HW-NAS) для разработки эффективных нейронных сетей для аппаратного обеспечения IMC. HW-NAS оптимизирует модели нейронных сетей, учитывая специфические особенности и ограничения аппаратного обеспечения IMC, стремясь к эффективному развертыванию. Этот подход также позволяет совместно оптимизировать аппаратное и программное обеспечение, настраивая оба для достижения наиболее эффективной реализации. Ключевые аспекты в HW-NAS включают определение пространства поиска, формулирование проблемы и балансировку производительности с вычислительными требованиями. Несмотря на его потенциал, остаются вызовы, такие как единая структура и бенчмарки для различных моделей нейронных сетей и архитектур IMC.

HW-NAS расширяет традиционный поиск нейронной архитектуры, интегрируя аппаратные параметры, тем самым автоматизируя оптимизацию нейронных сетей в рамках аппаратных ограничений, таких как энергопотребление, задержка и размер памяти. Недавние фреймворки HW-NAS для IMC, разработанные с начала 2020-х годов, поддерживают совместную оптимизацию параметров нейронной сети и аппаратного обеспечения IMC, включая размер кроссбара и разрешение АЦП/ЦАП. Однако существующие обзоры NAS часто не учитывают уникальные аспекты аппаратного обеспечения IMC. Этот обзор обсуждает методы HW-NAS, специфические для IMC, сравнивает текущие фреймворки и обрисовывает исследовательские вызовы и план развития для будущего. Он подчеркивает необходимость включения оптимизации дизайна IMC в фреймворки HW-NAS и предоставляет рекомендации для эффективной реализации в аппаратно-программном совместном проектировании IMC.

В традиционных архитектурах фон Неймана высокая энергозатратность передачи данных между памятью и вычислительными блоками остается проблемой, несмотря на параллелизм процессора. IMC решает эту проблему, обрабатывая данные в памяти, снижая затраты на перемещение данных и улучшая задержку и энергоэффективность. Системы IMC используют различные типы памяти, такие как SRAM, RRAM и PCM, организованные в кроссбарных массивах для эффективного выполнения операций. Оптимизация параметров проектирования устройств, схем и архитектур критична, часто используя HW-NAS для совместной оптимизации моделей и аппаратного обеспечения для ускорителей глубокого обучения, балансируя производительность, вычислительные требования и масштабируемость.

HW-NAS для IMC интегрирует четыре техники глубокого обучения: сжатие модели, поиск модели нейронной сети, поиск гиперпараметров и оптимизацию аппаратного обеспечения. Эти методы исследуют пространства проектирования для нахождения оптимальных конфигураций нейронной сети и аппаратного обеспечения. Сжатие модели использует техники, такие как квантование и обрезка, в то время как поиск модели включает выбор слоев, операций и соединений. Поиск гиперпараметров оптимизирует параметры для фиксированной сети, а оптимизация аппаратного обеспечения корректирует компоненты, такие как размер кроссбара и точность. Пространство поиска охватывает операции нейронной сети и проектирование аппаратуры, стремясь к эффективной производительности в рамках заданных аппаратных ограничений.

В заключение, несмотря на значительные достижения техник HW-NAS для IMC, остаются несколько вызовов. Нет единой структуры, интегрирующей проектирование нейронной сети, аппаратные параметры, обрезку и квантование в единый поток. Бенчмаркинг различных методов HW-NAS должен быть более последовательным, что усложняет справедливые сравнения. Большинство фреймворков сосредотачиваются на сверточных нейронных сетях, игнорируя другие модели, такие как трансформеры или графовые сети. Кроме того, оценка аппаратного обеспечения часто требует большей адаптации к нестандартным архитектурам IMC. Будущие исследования должны стремиться к созданию фреймворков, которые оптимизируют программное и аппаратное обеспечение, поддерживают разнообразные нейронные сети и улучшают эффективность данных и отображения. Сочетание HW-NAS с другими техниками оптимизации критично для эффективного проектирования аппаратного обеспечения IMC.

“`

Мобильная разработка на заказ и готовые решения

Мобильная разработка

Готовые и индивидуальные решения

Веб решения - разработка сайтов и сервисов

Web решения

Получите бесплатную консультацию по веб-разработке прямо сейчас

Аутсорсинг, подбор специалистов и команд разработки

Аутсорсинг

Выберите своего специалиста сегодня и начните свой проект